Optical trapping reveals propulsion forces, power generation and motility efficiency of the unicellular parasites Trypanosoma brucei brucei

Eric Stellamanns^{a,1}, Sravanti Uppaluri^{a,2}, Axel Hochstetter^b, Niko Heddergott^c, Markus Engstler^c, Thomas Pfohl^{a,b,3}

^aDepartment of Complex Fluids, Max Planck Institute for Dynamics and Self-Organization, 37073 Göttingen, Germany

^bDepartment of Chemistry, University of Basel, 4056 Basel, Switzerland

^cDepartment of Cell and Developmental Biology, Biocentre, University of Würzburg,

97074 Würzburg, Germany

¹present address: DESY Photon Science, 22607 Hamburg, Germany

²present address: Department of Chemical and Biological Engineering, Princeton University,

Princeton, NJ 08544, USA

³To whom correspondence may be addressed. E-mail: thomas.pfohl@unibas.ch

Supplementary information

Figure S1: Optical trapping and determining of escape flow velocity v_e for paralyzed trypanosomes

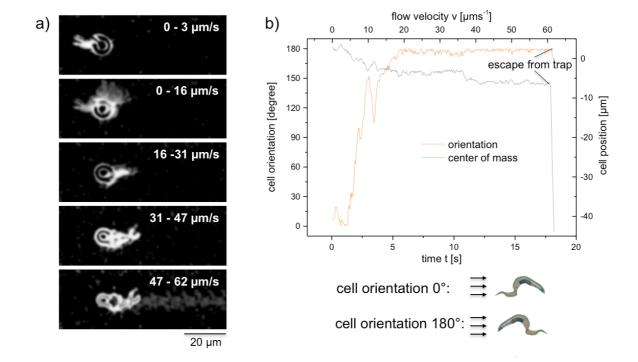


Figure S1: Optical trapping and determining of escape flow velocity v_e for paralyzed trypanosomes

- a) Overlay of exemplary images of trapped a paralyzed trypanosome in different flow conditions. The paralyzed trypanosome is dragged out of the optical trap at flow velocities of v_e .
- b) Plot of cell orientation and cell position (distance from trap centre) versus flow velocity v (time of flow velocity ramp). The schematic defines orientation is 0° when the cell is facing downstream and 180° when upstream. The escape flow velocity is recorded as the point at which the centre of mass jumps.